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Synchronization in oscillator networks with delayed coupling: A stability criterion
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We derive a stability criterion for the synchronous state in networks of identical phase oscillators with
delayed coupling. The criterion applies to any network~whether regular or random, low dimensional or high
dimensional, directed or undirected! in which each oscillator receives delayed signals fromk others, wherek is
uniform for all oscillators.

DOI: 10.1103/PhysRevE.67.036204 PACS number~s!: 05.45.Xt, 02.30.Ks, 87.10.1e
ve
s

re

b
F
tic

ac
le
e
hr
e
d
c

o
st
e
a
o

to
d

e
i

fin
e
at
th
he
o
yn
n

-
, a

. To

. 1
cal

a-

e
s-

ig-

al

ion-
I. INTRODUCTION

Networks of oscillators with time-delayed coupling ha
recently attracted attention because of their application
neurobiology@1–3#, laser arrays@4,5#, microwave devices
@6,7#, communications satellites@8#, and electronic circuits
@9#, and also because of their inherent mathematical inte
@10–13#.

In the simplest models, the oscillators are described
their phases alone, with amplitude variations neglected.
example, Schuster and Wagner considered two iden
phase oscillators with delayed sinusoidal coupling@1#. Then
Niebur, Schuster, and Kammen@2# studied a two-
dimensional square grid of identical phase oscillators, e
interacting with its four nearest neighbors, and again coup
sinusoidally with a time delay. For certain parameter valu
their simulations showed that the array settles into a sync
nized state in which all oscillators move in phase at a fix
frequencyV. The stability of this in-phase state was foun
to depend on the values of the oscillators’ natural frequen
time delay, and coupling strength. Nieburet al. suggested a
condition for the stability of the synchronized state, based
a physical argument, but they did not address the linear
bility problem mathematically. The analysis would involv
studying the eigenvalues of an infinite system of line
delay-differential equations. To gain insight into this class
stability problems, Yeung and Strogatz@11# began with a
simpler, idealized mean-field model in which each oscilla
is coupled equally strongly to all the others, and derive
rigorous stability criterion for that special case.

Recently, we tried to extend this analysis to a on
dimensional chain of phase oscillators, each coupled to
nearest neighbors. When we did, we were surprised to
that the same stability criterion emerged as for the mean-fi
case. This seemed very strange—the dynamics of oscill
arrays usually depend strongly on the dimensionality of
underlying lattice, or more generally, on the topology of t
array. But as we will show in this paper, for a certain class
connection topologies the condition for stable in-phase s
chronization is independent of the topology. The only co
straint is that each oscillator receives signals fromk others,
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wherek is uniform for all oscillators. In particular, the ex
amples mentioned above—two oscillators, a square grid
fully connected graph—are all included as special cases
illustrate, we depict several connection topologies in Fig
that, if populated with phase oscillators, would have identi
stability criteria.

Specifically, the model is given by the following equ
tions:

u̇ i~ t !5v1
K

k (
j 51

N

ai j f „u j~ t2t!2u i~ t !…, ~1!

whereu i(t) is the phase of thei th oscillator,v is its natural
frequency,K is the coupling strength,k is the number of
signals each oscillator receives,f is the coupling function,t
is the delay, andN is the total number of oscillators. Th
adjacency matrixai j encodes the connection topology: if o
cillator j sends a signal toi, ai j 51; otherwise,ai j 50. This

FIG. 1. Example of coupling topologies:~a! square grid with
periodic boundary conditions (k54), ~b! completely connected
graph (k53), ~c! directed graph where each oscillator receives s
nals from two others (k52), ~d! ring with nearest neighbor and
next to nearest neighbor coupling (k54), ~e! randomly connected
graph (k54), and~f! a tree in which the root node receives a sign
from one of its children (k51). Arrows indicate direction of cou-
pling along an edge; edges without arrows are coupled bidirect
ally.
©2003 The American Physical Society04-1
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matrix defines a directed graph in the sense that oscilla
correspond to vertices, and edges correspond to couplin
teractions between oscillators. Each row in the matrix su
to k. The time delay can be viewed as arising from the fin
speed of signal transmission between oscillators. The
malizing prefactor 1/k in the coupling means that each osc
lator is influenced equally by its neighbors. The in-pha
synchronized state is given by

u i~ t !5Vt, ~2!

where the collective frequencyV is determined implicitly by
the algebraic equation

V5v1K f ~2Vt!, ~3!

as found by direct substitution of Eq.~2! into Eq. ~1!. Our
main result is that this state is linearly stable if and only

K f 8~2Vt!.0. ~4!

II. DERIVATION OF STABILITY CONDITION

We perform a linear stability analysis to determine t
local stability of solution~2! in the standard way by adding
small perturbation

u i~ t !5Vt1ef i~ t !, ~5!

where 0,e!1. To first order, the dynamics off i(t) are
governed by the linear delay differential equation

ḟ i~ t !5
K

k
f 8~2Vt!(

j 51

N

ai j @f j~ t2t!2f i~ t !#. ~6!

If K f 8(2Vt)50, we have neutral stability at linear orde
~in this case, higher-order terms need to be examined!. From
now on, and for the rest of the paper, we assumeK f 8
(2Vt)Þ0. To find an equation for the eigenvaluesl of Eq.
~6!, we substitutef i(t)5v ie

lt into Eq. ~6! and obtain an
exponential polynomial inl:

kelt@l1K f 8~2Vt!#v i5K f 8~2Vt!(
j 51

N

ai j v j . ~7!

Let

s5
kelt@l1K f 8~2Vt!#

K f 8~2Vt!
; ~8!

and we write Eq.~7! in matrix form

Av5sv, ~9!

wherev5(v1 , . . . ,vN). From this equation it is clear thats
is an eigenvalue ofA.

Although we cannot calculate the eigenvalues without f
ther assumptions on the topology of the graph, we can bo
their locations as follows. Gerschgorin’s circle theorem@14#
states that every eigenvalue of a matrixB5@bi j # lies in at
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least one of the circlesC1 , . . . ,Cn , whereCi has its center
at the diagonal entrybii and its radius equal to the absolu
sum along the rest of the row, i.e., the radius is equal
( j Þ i ubi j u. Applying Gerschgorin’s theorem to the eigenva
ues ofA, we find that all the circles are the same with cen
at the origin, sinceaii 50 for all i, and with radiusk. There-
fore all the eigenvalues ofA lie within this circle, and hence
satisfy

usu<k. ~10!

Now we rewrite Eq.~8! in the following form:

abeiu5elt~l1a!, ~11!

wheres5usueiu, b5(usu/k)P@0,1#, anda5K f 8(2Vt).
The conditions for local stability of Eq.~2! come from the

following proposition.
Proposition 1. For all l that satisfy Eq.~11!, Re(l),0 if

and only if a.0.
To prove Proposition 1, letl5r 1 is and write Eq.~11! in

terms of its real and imaginary parts:

ab cos~u2ts!e2tr5r 1a, ~12!

ab sin~u2ts!e2tr5s. ~13!

Squaring and adding the two equations yields

a2b2e22tr5~r 1a!21s2. ~14!

First, we prove the (⇐) direction of Proposition 1. We
assume, to the contrary, that there exists al satisfying Eq.
~11! such thatr>0, and thata.0. In this casea5uau, r
5ur u, and Eq.~14! becomes

g511~r 21s212ur uuau!/a2, ~15!

where g5b2e22tur u. On the one hand,gP@0,1#, since b
P@0,1# and r>0; on the other hand,g>1, with equality
only if r 5s50, i.e.,l50. This special case corresponds
an eigenvalues5k, whose associated eigenvector
(1,1,1, . . . ,1). This eigenvector reflects the rotational sym
metry of Eq.~1!; the system is neutrally stable to perturb
tions in which each phase is changed by the same cons
amount. This is, however, the only such neutral perturbati
because the network is assumed to be connected, this eig
pace is strictly one-dimensional@14#. Hence, for all other
perturbations,lÞ0; and therefore the right hand side of E
~15! is strictly greater than 1, which contradicts the earl
conclusion thatg<1. Therefore, the (⇐) direction of the
proof is complete.

Now we prove the (⇒) direction of Proposition 1 by
proving the contrapositive. That is, we will show that ifa
,0, there exists~at least! one solution withr>0. Since here
a52uau, Eq. ~12! becomes

ruaue2tr5r 2uau, ~16!
4-2
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where r52b cos(u2ts)P@21,1#. First consider the cas
where 0<r<1. Equation~16! can be written as

r 5~11urue2tr !uau. ~17!

The right hand side of this equation is always positive,
r .0 for this case; henceall such modes are unstable. No
consider the alternative case where21<r,0. Equation
~16! can be written as

2uauurue2tr5r 2uau. ~18!

Plotting the left hand side and the right hand side of Eq.~18!
versusr, we see there always exists a solution to Eq.~18!
with r .0, as shown by the intersection of the two curves
Fig. 2.~A negative solution also exists, but is irrelevant.! The
(⇒) direction of the proof is now complete.

III. EXAMPLE

To illustrate our results we consider the sinusoidal c
pling function f (u)5sin(u). The collective frequencyV of
the in-phase synchronous state is determined by Eq.~3!
which, for this example, can be written as

2
1

Kt
~Vt!1

v

K
5sin~Vt!. ~19!

We graphically display the solution in Fig. 3, as done in R
@15#, by simultaneously plotting the left hand side and t
right hand side of Eq.~19! versusVt. The left hand side is
simply a line with slope21/Kt and horizontal interceptvt.

Applying the stability criterion~4! for positiveK, we see
that if the line intersects the positive slope of the sine cu
~denoted by filled circles in Fig. 3!, the in-phase synchronou
state at that particular frequencyV is stable. The state is
unstable if the line intersects the negative slope of the cu
denoted by open circles.

To gain intuition on how changing parameters affects s
bility, first fix v, fix t, and increaseK. This corresponds to
rotating the line counterclockwise about its horizontal int

FIG. 2. Graphical solution to Eq.~18!.
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cept. For very small and positive K, the line is approximate
vertical and intersects the sine curve once, meaning the
one in-phase synchronous frequencyV. Now as the horizon-
tal interceptvt is varied, the stability of the synchronou
state periodically changes as the line alternates from in
secting the sine curve at a negative slope to intersecting
a positive slope. For largeK, the line is approximately hori-
zontal and there are many intersections with the sine cu
which guarantees that there exists a stable in-phase sync
nous state.

By studying this picture further, it is clear that only th
extrema of the coupling function are needed to determ
stability @16#. Thus, the stability diagrams for coupling func
tions f (u)5sinm(u), wherem.0 is odd, are identical since
these functions have the same extrema. We plot this stab
diagram in Fig. 4. The same diagram was found in Ref.@11#
for a special case of the problem considered here. It is in
esting to note that if you alter the coupling function so th
the extrema with negative slope in between are closer
gether horizontally, the regions of instability inK/v versus
t/T space become thinner.

FIG. 3. Graphical solution to Eq.~19! for K.0; ‘‘ d ’’ denotes a
stable state and ‘‘s ’’ denotes an unstable state.

FIG. 4. Stability diagram for coupling functionf (u)5sinm(u),
wherem.0 is odd.T52p/v is the natural period of oscillation. In
the white regions, one or more stable uniformly rotating synch
nous states exist. In the shaded regions, no stable uniformly rota
synchronous states exist.
4-3
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IV. DISCUSSION

Remarkably, the single condition~4! ensures that an infi
nite number of eigenvalues—corresponding to the infin
dimensionality of the delay-differential equation lineariz
about the synchronized state—is kept in the left half pla
~Generically, one would expect that an infinite number
conditions would be required.! Furthermore, the stability
condition depends only onf and not on the adjacency matr
et

tt.

ck

n

03620
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ai j . In that sense, the same stability condition holds for a
network in which each oscillator receivesk signals, indepen-
dent of all other details of its topology.
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